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H I G H L I G H T S

• Cognitive decline following surgery is an increasing concern, particularly in the elderly.
• Inflammatory cytokines, interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), are elevated in PND.
• The cytokine, IL-6, is required and sufficient for PND.
• BEA, a synthetic analog of DHEA, is a potent immune modulator and reduces inflammatory cytokines.
• BEA is proposed for clinical trial in hip replacement surgery to see if it will benefit PND as measured by reduction in IL-6.
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A B S T R A C T

Cognitive impairment following surgery is a significant complication, affecting multiple neurocognitive domains. 
The term “perioperative neurocognitive disorders” (PND) is recommended to encompass this entity. Individuals 
who develop PND are typically older and have increases in serum and brain pro-inflammatory cytokines 
notwithstanding the type of surgery undergone. Surgical trauma induces production of small biomolecules, 
damage-associated molecular patterns (DAMP), particularly the DAMP known as high molecular group box 1 
protein (HMGB1). Mechanistically, peripheral surgical trauma promotes pro-inflammatory cytokines that stim
ulate central nervous system (CNS) inflammation by disrupting the blood-brain barrier (BBB) causing functional 
neuronal disruption that leads to PND. PND is strongly linked to elevations in serum and CNS pro-inflammatory 
cytokines interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα); these cytokines 
cause further release of HMGB1 creating a positive feedback loop that amplifies the inflammatory response. The 
cytokine IL-6 is necessary and sufficient for PND. Dehydroepiandrosterone (DHEA) is a principal component of 
the steroid metabolome and is involved in immune homeostasis. DHEA has been shown to suppress expression of 
several pro-inflammatory cytokines by regulation of the NF-kB pathway. Bromo-epi-androsterone (BEA) is a 
potent synthetic analog of DHEA; unlike DHEA, it is non-androgenic, non-anabolic and is an effective modulator 
of immune dysregulation. In a randomized, placebo-controlled clinical trial, BEA effected significant and sus
tained decreases in IL-1β, TNFα and IL-6. This article presents BEA as a potential candidate for clinical trials 
targeting PND and further suggests the use of BEA in elective total hip arthroplasty as a well-documented surgical 
entity relevant to the management of PND.

1. Introduction

Perioperative neurocognitive disorders (PND) refer to a spectrum of 
cognitive impairments that occur around the time of surgery and include 

both acute and long-term cognitive decline. Perioperative neuro
cognitive disorders (PND) include postoperative delirium, delayed 
neurocognitive recovery (dNCR), and postoperative neurocognitive 
disorder (PNCD), which can occur within 7 days, 8 to 30 days, and 1 to 
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12 months after anesthesia/surgery, respectively. [1]. The relationship 
between surgery and cognition has long been recognized [2]. The first 
reference to cognitive problems following surgery was published in 
1887; entitled “Insanity following the use of anaesthetics in operations.” 
[3]; and the first modern era article was published in 1955 entitled 
“Adverse cerebral effects of anaesthesia on old people” [4]. The inci
dence of PND across the variety of surgical procedures ranges from 7 % 
to 56 % [5,6]. Since the 1950’s postoperative cognitive issues were a 
commonly recognized complication of cardiac surgery [4]. Several pa
tients who had been on the cardio-pulmonary bypass pump during 
surgery experienced cognitive decline, memory problems, and other 
postoperative neurologic symptoms. These symptoms were known as 
postperfusion syndrome or, informally, as “pumphead,” reflecting the 
idea that prolonged exposure on the pump was somehow responsible for 
the neurological effects [7,8].

It is now recognized that PND is a manifestation of the systemic in
flammatory response syndrome (SIRS) [9] induced by the sterile trauma 
of surgery [10]; it rapidly spreads by a cascade of molecular and cellular 
signaling pathways within the innate immune system with the greatest 
risk factor being the age of the patient [11,12]. The fact that peripheral 
trauma induces central inflammation is manifest in this study where 
there was no significant difference in the effect of general or spinal 
anesthesia on postoperative delirium in elderly patients with hip frac
ture [13–15].

Current management of PND involves a combination of non- 
pharmacological and pharmacological interventions aimed at preven
tion and treatment. For example, one intiative utilizes trained volunteers 
who engage postoperative patients in activities such as range-of-motion 
exercises and cognitive stimulation to prevent functional and cognitive 
decline of older persons during hospitalization [16,17]. Moreover, 
cognitive prehabilitation, using preoperative cognitive training, strives 
to enhance cognitive reserve [18]; optimizing sleep and managing pain 
as disturbances in sleep and poorly managed pain can both contribute to 
PND [19]. Pharmacologic intervention for PND has consisted of anti- 
inflammatory agents targeting neuroinflammation for which there is 
insufficient evidence to demonstrated effectiveness [20,21] leaving a 
therapeutic gap in treatment options. PND results in longer hospitali
zation, poorer prognosis and higher mortality rates [22,23]; de
mographics suggest an ever-increasing number of surgeries in the 
elderly resulting in an escalating need for mitigation of this post
operative condition [24].

2. Alarmins – Damage-associated molecular patterns (DAMPs)

The trauma associated with major surgery generates alarmins that 
are a group of endogenous molecules released by stressed or damaged 
cells. Alarmins function normally within cells, typically involved in 
processes such as maintaining cellular structure and DNA repair. How
ever, when released extracellularly due to cell stress or damage, they act 
as danger signals: damage or danger-associated molecular patterns 
(DAMPs) [25]. DAMPs play a crucial role in the early stages of the 
immune response by alerting the immune system of tissue damage or 
infection – in the case of infection they are called PAMPs – pathogen- 
associated molecular patterns [26].

The inflammatory responses to infection and sterile tissue injuries 
have different purposes; while the former protects the host from infec
tion and can be coupled with the induction of adaptive immunity, the 
latter primarily serves to promote tissue repair [27]. While initially 
helpful, the protective inflammatory repair processes driven by innate 
immunity can become harmful. This can happen when a low-grade 
immune response is insufficient to eliminate the inflammatory trigger, 
leading to improper resolution of the insult and the onset of chronic 
inflammation. Moreover, this can also happen when the immune 
response is exaggerated and uncontrolled, often linked to an over
production of DAMPs. This leads to acute systemic hyperinflammatory 
disorders, characterized by “collateral damage,” or chronic and 

excessive repair processes [28].
Upon release, alarmins bind to pattern recognition receptors (PRRs) 

on immune cells, neutrophils, macrophages and dendritic cells, to acti
vate and recruit these cells to the site of injury contributing to the 
initiation and amplification of inflammation [29]. This activation leads 
to the release of the classic triad of pro-inflammatory cytokines: tumor 
necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin- 
6 (IL-6) [30].

3. High mobility group box 1 (HMGB1)

“Danger Theory” in which the injured tissues were postulated to 
release intracellular molecules that activate the immune system [31] 
remained only a theory until High Mobility Group Box 1 (HMGB1) was 
established as a prototypic DAMP [32]. HMGB1 is a significant and well- 
studied DAMP; it is a nuclear protein found in almost all cell types and it 
is released during cell stress, injury, necrosis, or apoptosis. The inter
action between HMGB1 and the inflammatory cytokines is central to the 
perpetuation of the inflammatory response. HMGB1 and TNF-α are 
involved in a feedback loop that amplifies the inflammatory response: 
TNF-α induces release of HMGB1 which stimulates immune cells to 
produce more TNF-α. IL-1β can also induce the release of HMGB1; 
similar to TNF-α, IL-1β is produced in response to HMGB1 signaling and 
the two can bind together protecting IL-1β from degradation and pro
longs its inflammatory effects. Lastly, HMGB1 stimulates the production 
of IL-6 by macrophages and dendritic cells. Il-6 is a key cytokine in the 
acute phase of inflammation signals but HMGB1 sustains Il-6 production 
contributing to chronic inflammation [33–35].

4. Neuroinflammation and perioperative neurocognitive 
disorders

With PND, the surgically induced systemic inflammatory response 
disrupts the blood-brain barrier (BBB) [36]. The pro-inflammatory 
cytokine triad of TNF-α, IL-1β and IL-6, when released into the blood
stream, cross the BBB and perpetuate neuroinflammation [37,38]. 
Cyclooxygenase-2 (COX-2) plays a significant role in the disruption of 
the BBB in PND [39]. COX-2 is an enzyme that is typically upregulated in 
response to inflammation, and it is involved in the synthesis of pro- 
inflammatory prostaglandins, which can negatively impact BBB integ
rity [40]. The memory disturbances imparted by pro-inflammatory cy
tokines are due to inhibition of long-term potentiation (LTP) [41,42].

5. IL-6: Necessary and sufficient for perioperative 
neurocognitive disorders

Although IL-6 appears, at normal levels, to have an important role in 
neurocognitive health, its dysregulation leads to pathological effects 
[43]. Elevated serum IL-6 levels have been associated with poorer 
cognitive performance in healthy subjects [44,45]. IL-6 expression is 
primarily activated by IL-1β and TNFα [46]. IL-6 is both necessary and 
sufficient to produce PND [47,48]. When given systemically or via 
surgery-induced (DAMP) upregulation, IL-6 is capable of causing 
cognitive decline [48]. The CA1 region of the hippocampus is respon
sible for long-term potentiation, the neuro-biologic correlate for 
learning and memory [41]. Importantly, in a mouse model for PND, the 
tibial fracture aseptic trauma model, appropriate bone healing occurs 
when IL-6 is blocked [49].

6. DHEA

DHEA (dehydroepiandrosterone) and its sulfate form (DHEA-S) are 
the most prevalent steroids in the human metabolome. They play crucial 
roles in various physiological processes, including metabolism, immune 
function, and stress response [50]. DHEA production varies throughout 
life, peaking in early adulthood and then steadily declining. By the age 
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of 70–80, DHEAS levels typically drop to only 10–20 % of those found in 
young adults [51].

DHEA and cortisol have opposing hormonal effects, and maintaining 
a balance between their levels is vital for numerous physiological 
functions [40]. DHEA is often referred to as the “youth hormone” 
[52–54] while cortisol is commonly known as the “stress hormone” [55]. 
A lower ratio of DHEA to cortisol has been linked to various health is
sues, including stress, metabolic syndrome, immune dysfunction, 
increased susceptibility to infections, frailty, and higher all-cause mor
tality rates [56–59].

Although the adrenal glands are the primary source of these steroids, 
they are also produced locally in other tissues, such as primary lymphoid 
organs, intestines, gonads, skin, brain, and heart [56]. The age-related 
decline in the DHEA/cortisol ratio is associated with changes in the 
immune system characteristic of aging (immunosenescence) [60–62] 
and a paradoxical increase in inflammation (inflammaging) [63].

7. BEA – (16 alpha-bromoepiandrosterone)

BEA (16 alpha-bromoepiandrosterone) is a synthetic analog of DHEA 
that lacks DHEA’s androgenic and estrogenic effects. One of DHEA’s 
primary mechanisms is as a potent inhibitor of mammalian glucose-6- 
phosphate dehydrogenase (G6PDH), and in this regard, BEA is approx
imately 60 times more potent than DHEA [64]. BEA, previously known 
as HE2000, was developed over two decades ago as a treatment for 
various human infections. It has been used in nine clinical trials, treating 
228 participants for conditions including HIV, malaria, and hepatitis 
[64–67]. In March 1999, the FDA granted BEA investigational new drug 
(IND) status for use against HIV/AIDS [68,69], for which it demon
strated efficacy [70].

BEA has been shown to limit non-productive inflammation [71] and, 
due to its broad immune support, has been proposed as a potential 
treatment for Mycobacterium tuberculosis, the world’s most significant 
pathogen [72,73].

As with DHEA, BEA promotes a T1 immune response and helps 
rebalance the Th1/Th2 ratio, which naturally decreases with age [70]. 
This rebalancing offsets the consequences of a Th2 shift commonly 
observed in older individuals, including increased susceptibility to in
fections, reduced response to vaccines, and a higher incidence of auto
immune disorders [74–76].

BEA in the previous clinical trials was mostly given intramuscularly 
(IM). The oil-miscible BEA, given IM, resulted in injection site reactions 
including pain and induration that ranged from mild to moderate 
[65,70]. The formulation of BEA is now changed to be water-soluble 
which may circumvent or mitigate the injection site adverse reactions 
[77].

8. Trial of Bromoepiandrosterone for perioperative 
neurocognitive disorder in Total hip arthroplasty

The world Health Organization (WHO) designated 2021–30 as the 
decade of healthy aging to foster healthy aging and improve the lives of 
older people, their families, and communities [78]. Not surprisingly, 
age-related surgical intervention for age-related infirmity is an ascen
dant problem as discussed in the global burden of disease study of 
osteoarthritis [79].

By 2030, a projected 572,000 elective total hip arthroplasties (THA) 
will be performed annually in the United States, continuing as among 
the most accepted and effective surgical procedures to preserve the 
function of the joint and alleviate pain [80,81]. As such, a trial of BEA to 
mitigate PND in individuals undergoing THA is a practical pharma 
application with an at-risk PND demographic.

9. Primary outcomes for BEA in Total hip arthroplasty: IL-6 and 
trail making test B

While the classic triad of TNF-α, IL-1β and IL-6 have been used to 
monitor inflammation in PND, IL-6 is the singular reported cytokine to 
be both necessary and sufficient to produce the surgical phenotype; this 
happens whether a dose of IL-6 was given systemically or if the IL-6 was 
generated through surgically induced systemic inflammation pathways 
[48,82]. Preoperative IL-6 is higher in study participants who developed 
POD compared with those who do not [83]. Importantly, in patients 
with PND, the resolution of elevated IL-6 is associated with the return of 
normal cognitive function [84]; moreover, as previously noted in the 
animal model, the anti-inflammatory action of BEA did not impair 
healing [49].

Additional study parameters may include dosing strategies informed 
by prior trials that delineate the timeline and magnitude of IL-6 levels in 
postoperative blood and CSF.

The Trail Making Test (TMT–B) is one of the most used neuropsy
chological screening tests for brain dysfunction [85] and has long been 
used to evaluate deficits in cognitive processing speed and executive 
function [86]. TMT-B can be administered at bedside making it a valu
able tool for postoperative cognitive evaluation [87].

10. Summary

A peripheral surgery-induced innate immune response in elderly and 
otherwise susceptible individuals, can trigger an IL-6-mediated inflam
matory process in the hippocampus that results in memory impairment 
[88]. This article proposes an intervention with BEA to reduce surgical 
trauma induction of pro-inflammatory cytokines that trigger PND. For a 
trial, we advocate for hip replacement, a procedure that has a known 
incidence for PND of approximately 17 % [89]. Success in such a tar
geted, well-described, surgical disease entity may spur the trial of BEA in 
other disease entities having neuroinflammation as a defining attribute.
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